If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-29=91
We move all terms to the left:
3x^2-29-(91)=0
We add all the numbers together, and all the variables
3x^2-120=0
a = 3; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·3·(-120)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*3}=\frac{0-12\sqrt{10}}{6} =-\frac{12\sqrt{10}}{6} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*3}=\frac{0+12\sqrt{10}}{6} =\frac{12\sqrt{10}}{6} =2\sqrt{10} $
| 24x-2x²-70=0 | | 6/7=p/14 | | 3(2x+4)-9=39 | | -3/4(8x-4)=3-6x | | 28x+1=8 | | (7x+1)(4x-1)=8 | | 1*x=6.3 | | 8t–1=3 | | d÷7=6 | | 3b+1=22* | | 3u-4=≤-13 | | b−4=14 | | b+17=25 | | 53x+10=16 | | 0.2x-3=12 | | 4–7f=f–12 | | (40-1.2B)+6b=200 | | 5x+X=180° | | f(-5)=-2-4 | | 11/n=1/2 | | 7^(y+7)=8 | | -4×-8=2y | | 8(3n+8)-4n=84 | | (7-x)/x=5 | | 2x²+3x-152=0 | | 7x-8+10+6x+80=360 | | 1+8(-3+5r)=97 | | 8(x-4)=33 | | -8(1+6v)-v=-253 | | 6(1-7x)=-6(-4x-1) | | -62=-2(-4)^n/(-4) | | 11(r)=5r+5 |